TREATMENTS

TREATMENTS / STEMCELLS

STEM CELLS

Stem cells are undifferentiated biological cells that can differentiate into more specialized cells and divide (through mitosis) to produce more stem cells (self-renew).
In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blast cysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues.
There are three known accessible sources of autologous adult stem cells in humans:

  1. Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest).
  2. Adipose tissue (lipid cells), which requires extraction by liposuction.
  3. Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation), and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor.

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in various medical therapies. Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through somatic cell nuclear transfer or dedifferentiation have also been proposed as promising candidates for future therapies.

What are the unique properties of all stem cells?

Stem cells differ from other kinds of cells in the body. All stem cells—regardless of their source—have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
One of the fundamental properties of a stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. A stem cell cannot work with its neighbors to pump blood through the body (like a heart muscle cell); it cannot carry molecules of oxygen through the bloodstream (like a red blood cell); and it cannot fire electrochemical signals to other cells that allow the body to move or speak (like a nerve cell). However, unspecialized stem cells can give rise to specialized cells, including heart muscle cells, blood cells, or nerve cells.
Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells—which do not normally replicate themselves—stem cells may replicate many times. When cells replicate themselves many times over it is called proliferation. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.

Stem Cells Treatment

In each case, using one's own stem cells can help the body rebuild, regenerate and repair on its own.
The procedure continues to be successful, with patients experiencing health benefits even six months after stem cell treatment.
Adult stem cells, undifferentiated and adaptable, are able to transform into the cells of countless organs and structures within the human body. Many therapies use stem cells as they can restore damaged structures and rejuvenate failing cells very effectively. Stem cell science has seen considerable advancements in the last few years with many new developments and discoveries being made.

Our approach

We developed the Adult Autologous Stem Cells Therapy program to treat a variety of conditions. During stem cells treatment a patient receives 100 – 200 million stem cells. The quantity of restored cells not only covers daily losses, but exceeds them a thousand times. Thus, the reserve of the stem cells, practically lost for the latest 15 – 20 years, is restored. After such an active cell replenishment, organ gets rejuvenated and renewed, because the new and active cells displace the old and damaged ones.

Advantages

  1. Side effects and rejection free (use the patient's very own stem cells from their bone marrow)
  2. Avoidance of any allergic and immune reactions (own cells suit chromosomal and genetic structure)
  3. Does not require general anesthesia
  4. No risk of contamination by transmissible diseases
  5. No oncological complications
  6. Period of time between getting the bone marrow aspiration and injection of the activated stem cells is few weeks only

The package includes

  1. Detoxification therapy before harvesting the cells
  2. Detoxification therapy before re-injecting the cells
  3. Medical tests, diagnostics
  4. Consultations with doctors
  5. Stem cells therapy
  6. Medications
  7. Follow-up